Construct a neural network model in Python to classify the MNIST data set correctly.

Input:

Output: import keras

# Input layer
input_layer = keras.layers.Input(shape=(784,))

# Hidden layer
hidden_layer = keras.layers.Dense(128,
activation=’relu’)(input_layer)

# Output layer
output_layer = keras.layers.Dense(10,
activation=’softmax’)(hidden_layer)

# Model
model = keras.Model(inputs=input_layer, outputs=output_layer)

# Compile model
model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’,
metrics=[‘accuracy’])

Prompt: Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Construct a neural network model in Python to classify the MNIST data set correctly.

### Input:

### Output:
import keras

# Input layer
input_layer = keras.layers.Input(shape=(784,))

# Hidden layer
hidden_layer = keras.layers.Dense(128,
activation=’relu’)(input_layer)

# Output layer
output_layer = keras.layers.Dense(10,
activation=’softmax’)(hidden_layer)

# Model
model = keras.Model(inputs=input_layer, outputs=output_layer)

# Compile model
model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’,
metrics=[‘accuracy’])